
1

Offline data manipulations for
everyone with Plug-Ins and SQLite

2

approx. 48 Mio. €
Turnover in 2021

Training company,
Partner in dual studies> 125 Customers

Cross-sector
Manufacturer-neutral

FoundaEon 1994

Headquarter
Ratingen
Branches

Frankfurt am Main,
Köln, München, Hamburg

Your partner for digital transforma2on.
Individual IT solu2ons from one single source.

Certified partner
leading technology

manufacturer

> 360 Employees

Facts and figures.

3

Philipp Hartenfeller
• Düsseldorf, Germany
• Master IT-Management
• Since 2016 @ MT AG
• Senior Consultant – Oracle APEX
• Mostly doing WebDev, DBs and APEX

Testing (https://lct.software)

@phartenfeller

Blog: https://hartenfeller.dev/blog/

$ whoami

@phartenfeller@mastodon.social

https://lct.software/
https://twitter.com/phartenfeller
https://hartenfeller.dev/blog/
https://mastodon.social/@phartenfeller

4

What this talk is about

• Offline APEX is no new topic, there have
been a few methods already

• I am interested in HOW it should be
usable in APEX (and the technical details)

5

What this talk is about

How should it be accessible ?

• Low Code Interface -> No
JavaScript Code wrangling
• APEX Plug-Ins

• Easy to configure
• Enter your Query and let’s

go!

6

What this talk is about

How should it be accessible ? How should it work ?

• Low Code Interface -> No
JavaScript Code wrangling
• APEX Plug-Ins

• Easy to configure
• Enter your Query and let’s

go!

• Fast
• Handle lots of data
• Concept to merge changes

back to DB
• Somewhat future proof

Proof of Concept: Not production ready!

7

Create App + PWA func?onali?es + Import Plug-Ins

8

Setup Sync Plug-In

9

Setup Plug-Ins that use offline storage

10

Go offline, change something and sync to DB

11

What I didn‘t show

You actually need packages
•For Plug-Ins
•Code to merge your data back to the source
(more on tha later)

12

Data Synchronization

13

Why this topic is important

• Allowing users to edit data without a
connection to the DB has effects of
decentralization
• You still want a single source of truth
• This results in new challenges for data

consistency

14

Setup Sync

• Dynamic AcKon Plug-In on
page-load:
Handles all the sync

• Changes to query ->
Increase version

• Last Changed column
needed for conflict
management (more on that
later)

15

Sync Timeline - 1

1. Cache current HTML page

2. Synchronize Client Changes with DB

• Send client updates to central DB

•Delete corresponding rows on the client

• It is now in the control of the DB what will happen with

these rows

16

Sync Timeline - 2

3. Synchronize DB Changes with Client
• DB sends PK + Timestamp for each row:
• PK known and Timestamp matches: ✅
• PK unknown or Timestamp mismatch: ⚠ request full row -

> insert / update
• Delete rows not present in central DB anymore:
• Store every PK received from server in a temp table
• ATer receiving all rows, delete local rows where PK not in

temp table

17

Data Access Strategies - Online First

• First try to get data from the DB
• Only when no connection use

offline storage

Pros Cons
• “Normal APEX Mode“
• Less conflicts
• Live data

• Much logic for
consumers

• What to do on slow /
unreliable
connections

Design Decision

18

Data Access Strategies - Offline First

• First try to get data from the DB
• Only when no connection use

offline storage

Pros Cons
• Reliable Experience
• Less logic for

consumers

• Only updates after re-
sync

• More conflicts

Design Decision

19

💡 Build different experiences for different use cases

•Offline-first has downsides
•Make sure only people who

need offline access use it
• Field technician gets offline

App / Page
•Office worker gets online App

/ Page

Photo by MIOPS Trigger from Unsplash

https://unsplash.com/@miops?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/fKeHXQi6G3c?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

20

Change Synchroniza?on

• Local changes need to be
written back to the central
DB
• Ensure all local updates are

properly saved in the
central DB
•Different scenarios

21

Change Synchronization - Potential outcomes

a: Single Client Row Update (✅)
• Only one client modifies the row,

straigh^orward synchroniza_on

b: Sequen_al Client Row Updates (✅)
• Client 2 updates row aaer receiving

Client 1's changes, preserving data
integrity

c: Concurrent Client Row Updates (⚠)
• Two clients modify the same row version

simultaneously, poten_al data conflict

22

How changes are stored

•Don‘t directly insert into source table to handle conflicts
•Generic changes table

23

How changes are processed

• Package gets called where you can implement
your own logic
• Resolve the conflicts
• Call your existing Table- / Transaction-APIs

• Future consideration: Bulk Processing with
Transaction IDs
• No trigger, instead directly call a process package
• Add transaction IDs so you can bulk process all

changes

24

Conflict Resolution #1 – Last Write Wins

Photo by Matthias Speicher from Unsplash
Photo by Ryan Moreno from Unsplash

Design Decision

https://unsplash.com/@matthiasspeicher?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/FxGoXaib51Q?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@ryanmoreno?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/IcAtXrAZx8E?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

25

Conflict Resolu?on #2 – Merge Conflict Detec?on Design Decision

26

Conflict Resolution #2 – Merge Conflict Detection Design Decision

27

Conflict Resolu?on #2 – How to do a merge

• On conflict:
• don‘t delete row from changes table and set failed = 1

• User must do merge manually
• Show current row next to changed row (like Git 3-way-merge)

Design Decision

28

Technical Implementation

29

Where to store data

Browser Storage Options:

• LocalStorage
• Key-Value object-store, slow,

designed for small amounts
•WebSQL
• Deprecated

• IndexedDB
• For large data, transactions,

Key-Value object-store

The thing with IndexedDB:
• Complex API
• No support for complex queries
• History of nasty bugs (mostly

Safari)
• Not ACID compliant

The pain and anguish of using IndexedDB: problems,
bugs and oddities

https://gist.github.com/pesterhazy/4de96193af89a6dd5ce682ce2adff49a
https://gist.github.com/pesterhazy/4de96193af89a6dd5ce682ce2adff49a

30

Not the DB we deserve, but the hero we need

Source

https://twitter.com/ChromiumDev/status/1565105522092695553?s=20

31

Wait a minute… What is SQLite?

•Most used DB, top 5 most
deployed soIware ever
(es_mated one trillion ac_ve DBs)
• Full-featured SQL
• Serverless (not the cloud thing)
• TransacNonal
•ACID
•Public Domain

•Really fast
• Stores data in a single file
•Recommended Storage

Format by the US Library of
Congress

More on SQLite

https://www.sqlite.org/about.html

32

How does it run in the browser

Compile existing software to hardware-
near browser understood layer

Origin Private File System (OPFS)
• Sites get a private file system
• SQLite directly writes to here

Source

https://developer.mozilla.org/en-US/docs/Web/API/StorageManager/getDirectory

33

Implement into APEX

• OPFS requires these headers:

• APEX bug: .wasm invalid mime-type in header

Link

https://www.sqlite.org/download.html

34

Will be fixed in 23.1

• Thanks to Stefan !!! For now proxy magic:

https://twitter.com/stefan__dobre

35

How develop Plug-Ins

36

37

Wrapping Up

38

What s?ll needs to be done

• Data type handling
• Dates, Timestamps …
• BLOBs

• LOVs (Select Lists, Popup LOV,
Shuttle, Checkboxes…)
• Apply more table rules to client

(FKs, check constraints,
indexes, defaults…)
• Error message improvements

• Notify when sync completed
with data changes
• Expand Plug-In Ecosystem

39

Why you may not want to use this

• You lose authority over your data
• Data on the client can easily be duplicated /

shared

• Merge conflicts / Inconsistent data state
• Divergent development approach for

offline apps
• Increased complexity
• Scalability: Synchronization processes can

demand significant data transfers
• SQLite as fast as the device using it

Photo by JESHOOTS.COM from Unsplash

https://unsplash.com/@jeshoots?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/-2vD8lIhdnw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

40

Where can I get this ?

h<ps://github.com/phartenfeller/apex-off-grid
•Needs DocumentaFon
•Needs Refactoring
•ContribuFons welcome 😄

https://github.com/phartenfeller/apex-off-grid

41

Conclusion

• I am quite happy with the result
• Sync-Plug-In easy to use, hides

complexity
•Confident that SQLite is a great

choice for small to large data sizes
•Great browser support
•Not sure about header

requirements
Photy by Sebas,an Herrmann from Unsplash

https://unsplash.com/@officestock?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/M-ecv1ju6aM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

42

Testing APEX Apps is now
as easy as creating them.

• Tailored to APEX

• Save a lot of time on regression tests

• Use our intuitive LCT-App and don‘t write any

test code

• Testing on multiple platforms simultaneously

43

Flows for APEX
BPMN 2.0 Workflows for APEX • Open Source

• Community Driven

• Support available

44

