
1

APEX UI Tes+ng: Best Prac+ces 
and Pi6alls



2

We are one of the top 20 IT service providers in Germany!

> 800 employees
14 offices globally
> 150 customers
> 10 industries

Dortmund



3

Philipp Hartenfeller
• Düsseldorf, Germany
• Master IT-Management
• Since 2016 @ MT GmbH
• Senior Consultant – Oracle APEX
• Mostly doing WebDev, DBs and APEX 

Testing (https://lct.software)

@phartenfeller

Blog: hartenfeller.dev/blog/

$ whoami

hartenfeller.dev/links

https://lct.software/
https://twitter.com/phartenfeller
https://hartenfeller.dev/blog/
htps://hartenfeller.dev/links


4

What this talk is about? / Agenda

Considerations

Writing test code

Wri/ng good tests

APEX Pitfalls



5

Considerations



6

What are we aiming for?

•Maintainability
(Your app will change; it should be easy to adjust your tests)
• Robust test routines

(tests should not break on APEX upgrades / positional changes)
• Continuous testing

(testing while development; maybe Test-driven development)
• Valuable testing

(Don’t just tick the box of having any tests)



7

There are no shortcuts

• Effective testing will require:
• Lots of time
• Expertise
• Constant maintenance

• You want to make sure to use it as 
efficiently as possible!
• Consider how costly bugs are in 

your case and how much impact 
bugs have
• In some cases, manual testing is 

cheaper
Source: Nathan Dumlao

https://unsplash.com/photos/100-us-dollar-bill-mZZ0ls7X9tc


8

Which framework to use?

Things to consider
• Browser support
• Performance
• Ease of wriHng test code
• Ease of use / geIng started
• How well is it maintained 

(browsers get updates very 
frequently)

• How easy it is to debug / find 
errors
• DocumentaHon
•Maturity / Feature 

completeness
•Measures against flakiness



9

Which framework to use?

Things you should not consider
• Programming language support

(its mostly scripting and modern frameworks > language 
familiarity)
• Record and Playback features
• Does not understand APEX --> bad selectors like stylistic instead of 

descriptive classes
• Easy to start from 0 but how to maintain?
• Good for navigating around but you also want assertions



10

My recommendations

Cypress (2017)
Language: JS, TS
License: MIT (Open Source)
Company: Cypress.io, Inc.

Playwright (2020)
Languages: JS, TS, Python, C#, Java
License: Apache 2.0 (Open Source)
Company: Microsoft

Key differences:
• PW: more mature browser 

support (but both Chromium, 
WebKit and Firefox)
• PW: more comprehensive in 

things like web-APIs, browser 
events, mulb-context, etc. 
• CY financed by commercial cloud

PW not commercial (sponsored 
by Microsod + OSS community)
• Both heavily used



11

Playwright: Actionability Checks

Clicking on something will do following checks:
•A@ached to DOM
•Visible
• Enabled
• Stable (wait unJl animaJon completed)
• Element not obscured by other elements

à Auto waits and less flaky tests



12

Writing Test Code
(Playwright)



13

Requires Node.js



14

playwright.config.js

For now: keep as
it is

Make sure to
browse 
documentabon

https://playwright.dev/docs/intro


15

tests/my_test.spec.js



16

Locators -> how to point to elements



17

Demo – First Test

Photo by Jakob Owens from Unsplash

https://unsplash.com/@jakobowens1?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/CiUR8zISX60?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


18

Demo – Debugging

Photo by Jakob Owens from Unsplash

https://unsplash.com/@jakobowens1?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/de/fotos/CiUR8zISX60?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


19

Writing Good Tests



20

What to test

• Test the UI not your backend
• for PL/SQL use utPL/SQL

• Test workflows that users perform regularly in your app
•Watch / talk to your end users and replicate their behavior in 

tests
• Test with different users / authorizations
• Test your app not the APEX framework
• Trust that the APEX devs do their work
• E.g. fill a date input and don‘t try to interact with the date picker

https://github.com/utPLSQL/utPLSQL


21

Test environment

•Run tests against dev and/or test environments regularly
•Continuous feedback instead of 40 % fails after 3 months 

of development
•Disable Single-Sign-On on test environment
• Test as multiple users with different authorizations
• Getting Kerberos etc. working in the test runners for multiple 

users is hard
• Filling login form during tests is way easier



22

Test scope

• Write small tests for specific 
funcbonalibes
• You want 37✅ | 3❌

not 0✅ | 1❌
to see what exactly is broken
• More informabon and tests abort 

ader an error occurred
• Developer experience beher in 

smaller tests

Example structure:
Customer Details Page
• Create
• Edit
• Delete
• Delete button disabled when 

user has active contracts 
• Error: e-mail unique
• Error: last name required
Contract Page
…



23

Test isolaKon

• When the previous test 
fails the next one 
should not be affected
• This means that every 

test should start at zero
• New session, new 

login
• Data preparation 

(more on that later)



24

Assertions

• Add a lot of assertions to your tests
• Fail fast (navigation leads to wrong page, directly check header text)
• Test small things at the side next to main test case (e.g. create customer)
• Your tests are more robust and less flaky



25

Test Data Handling

• You will run into data related issues
• Unique constraints
• Value missing in LOV

• To make sure our tests work every 
@me you need data preparabon 
roubnes
• PL/SQL procedure that does 

inserts/deletes etc.
• Create ORDS endpoint for that 

procedure
• Call endpoint at the start of the test 



26

Give static IDs to regions / elements in APEX

• Autogenerated IDs 
change if you not 
explicitly check „Export 
with Original IDs”
• StaHc IDs give context 

and are easy to read
• StaHc IDs likely never 

change where classes, 
labels, etc. may do



27

Extract commonly used functionalities into reusable functions

• Test code is 
just 
JavaScript
• Just extract 

test code 
you need 
again to 
functions



28

APEX Pitfalls



29

Session in URL

• APEX stores the 
session ID in 
the URL
• For explicit 

navigabons 
(not link click) 
the URL need 
to include the 
current session 
ID



30

Modals

• APEX uses „iframes“ 
to display modal 
pages
• iframe is basically 

HTML document 
inside HTML 
document
• Needs special 

handling



31

Modals



32

Complex Components: Popup LOV

• Lots of variations:
• Single / Multi cols
• Search while typing / button
• Single / multi values
• Inline / popup dialog
• Allow manual values
• Required / quickpicks
• In normal / modal page
• Page item / Interactive Grid

Find interaction code that works for 
all variants.



33

Popup LOV strategy

• Click on popup trigger bu_on
• Grab popup dialog element (always on parent page)
• Clear search input and type in term
• Check if a search bu_on is present and click
•Wait for network request that includes „/wwv_flow.ajax“
• Check if there is a „no data found“ element present
• Iterate results and click on the one that exactly matches the 

search term (order ma_ers -> “Kevin“ can appear above “Kev“ 
while searching for “Kev”)



34

Editing the Interactive Grid

•Delete row -> use delete bu@on from 🍔menu
•New row -> click add row bu@on
• Edit row -> filter grid so that only the row you 

want to edit is displayed

Edit columns: be@er not by posiJon but by column 
ID



35

Editing the Interactive Grid

Edit a column:
•Click into cell that you want to edit (next slide)
• Find input by column ID (generated or static ID)
• Fill Input



36

Editing the Interactive Grid

Problem: column ID not in table layout (unlike inputs)
Solition: find column index with column ID:
• Get all elements from selector: „#ig_id .a-GV-header > span:first-child“ 

(table header labels)
• Loop over each and find index of the one with the right ID
• We can then click on „locator('#ig_id .a-GV-table tr.a-GV-row:first-child .a-

GV-cell').nth(index)“



37

How it works with LCT



38

Testing APEX Apps is now
as easy as creating them.

• Tailored to APEX

• Save a lot of time on regression tests

• Use our intuitive LCT-App and don‘t write any 

test code

• Testing on multiple platforms simultaneously



39

Flows for APEX
BPMN 2.0 Workflows for APEX • Open Source

• Community Driven

• Support available



40


